Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 14578, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028741

RESUMO

The small intestinal mucosa constitutes a physical barrier separating the gut lumen from sterile internal tissues. Junctional complexes between cells regulate transport across the barrier, preventing water loss and the entry of noxious molecules or pathogens. Inflammatory diseases in cattle disrupt this barrier; nonetheless, mechanisms of barrier disruption in cattle are poorly understood. We investigated the direct effects of three inflammatory cytokines, TNFα, IFNγ, and IL-18, on the bovine intestinal barrier utilizing intestinal organoids. Flux of fluorescein isothiocyanate (FITC)-labeled dextran was used to investigate barrier permeability. Immunocytochemistry and transmission electron microscopy were used to investigate junctional morphology, specifically tortuosity and length/width, respectively. Immunocytochemistry and flow cytometry was used to investigate cellular turnover via proliferation and apoptosis. Our study shows that 24-h cytokine treatment with TNFα or IFNγ significantly increased dextran permeability and tight junctional tortuosity, and reduced cellular proliferation. TNFα reduced the percentage of G2/M phase cells, and IFNγ treatment increased cell apoptotic rate. IL-18 did not directly induce significant changes to barrier permeability or cellular turnover. Our study concludes that the inflammatory cytokines, TNFα and IFNγ, directly induce intestinal epithelial barrier dysfunction and alter the tight junctional morphology and rate of cellular turnover in bovine intestinal epithelial cells.


Assuntos
Citocinas , Enteropatias , Animais , Bovinos , Dextranos , Células Epiteliais , Interleucina-18 , Mucosa Intestinal , Permeabilidade , Junções Íntimas , Fator de Necrose Tumoral alfa
2.
Front Vet Sci ; 8: 716570, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660761

RESUMO

Robust and reproducible protocols to efficiently reprogram adult canine cells to induced pluripotent stem cells are still elusive. Somatic cell reprogramming requires global chromatin remodeling that is finely orchestrated spatially and temporally. Histone acetylation and deacetylation are key regulators of chromatin condensation, mediated by histone acetyltransferases and histone deacetylases (HDACs), respectively. HDAC inhibitors have been used to increase histone acetylation, chromatin accessibility, and somatic cell reprogramming in human and mice cells. We hypothesized that inhibition of HDACs in canine fibroblasts would increase their reprogramming efficiency by altering the epigenomic landscape and enabling greater chromatin accessibility. We report that a combined treatment of panobinostat (LBH589) and vitamin C effectively inhibits HDAC function and increases histone acetylation in canine embryonic fibroblasts in vitro, with no significant cytotoxic effects. We further determined the effect of this treatment on global chromatin accessibility via Assay for Transposase-Accessible Chromatin using sequencing. Finally, the treatment did not induce any significant increase in cellular reprogramming efficiency. Although our data demonstrate that the unique epigenetic landscape of canine cells does not make them amenable to cellular reprogramming through the proposed treatment, it provides a rationale for a targeted, canine-specific, reprogramming approach by enhancing the expression of transcription factors such as CEBP.

3.
Artigo em Inglês | MEDLINE | ID: mdl-33210453

RESUMO

Naturally occurring disease in pet dogs is an untapped and unique resource for stem cell-based regenerative medicine translational research, given the many similarities and complexity such disease shares with their human counterparts. Canine-specific regulators of somatic cell reprogramming and pluripotency maintenance are poorly understood. While retroviral delivery of the four Yamanaka factors successfully reprogrammed canine embryonic fibroblasts, adult stromal cells remained resistant to reprogramming in spite of effective viral transduction and transgene expression. We hypothesized that adult stromal cells fail to reprogram due to an epigenetic barrier. Here, we performed assay for transposase-accessible chromatin using sequencing (ATAC-seq) on canine stromal and pluripotent stem cells, analyzing 51 samples in total, and establishing the global landscape of chromatin accessibility before and after reprogramming to induced pluripotent stem cells (iPSC). We also studied adult stromal cells that do not yield iPSC colonies to identify potential reprogramming barriers. ATAC-seq analysis identified distinct cell type clustering patterns and chromatin remodeling during embryonic fibroblast reprogramming. Compared with embryonic fibroblasts, adult stromal cells had a chromatin accessibility landscape that reflects phenotypic differentiation and somatic cell-fate stability. We ultimately identified 76 candidate genes and several transcription factor binding motifs that may be impeding somatic cell reprogramming to iPSC, and could be targeted for inhibition or activation, in order to improve the process in canines. These results provide a vast resource for better understanding of pluripotency regulators in dogs and provide an unbiased rationale for novel canine-specific reprogramming approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...